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Uncertainty propagation problem
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Input variables
x œ RM

Model
M(x)

Output variables
y = M(x) œ RL

Stochastic inputs
PDF(x)

Model
M(x)

Stochastic outputs
PDF(y)?

?



Monte-Carlo simulation

• Sample the joint input distribution:

xi ≥ PDF(x)

• Input sample can be generated using variance reduction methods such as: Latin
Hypercube sampling (LHS), Halton or Hammersley sequences.

• Obtain a response sample by evaluating the model in each input realization:

yi = M(xi)

• Pros: Very robust and easy to implement and parallelize
• Cons: Convergence is slow (Ã N

≠1/2)
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Polynomial Chaos expansion

• Build a polynomial surrogate of the model:

y(x) ¥ ŷ(x) =

Nc≠1ÿ

l=0

cl „l(x)

• A polynomial basis, „l(x), is built with respect to PDF(x)

Distribution Polynomial Family
Uniform Legendre
Normal Hermite
Exponential Laguerre

• The model is evaluated, yi = M(xi), and projected/fitted to the polynomial basis.
• A MC sample is generated using the surrogate.
• Sensitivity analysis is estimated from the MC sample Saltelli et al. [Saltelli 2010].
• Pros: Convergence is fast (Ã N

≠m, m > 1, m is problem dependent)
• Cons: How to define the order of the polynomials in each variable? How to avoid over

fitting? Hot to avoid oscillations?
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How to deal with correlated inputs?
Rosenblatt Transformation [Rosenblatt 1952]
• Transforms the correlated input variables (x) into a multi-dimensional uncorrelated

uniform space (w). Solve the propagation problem in the uncorrelated space:

y(x) = y(F≠1
Q (w)) ¥ ˆy(w) =

Nc≠1ÿ

l=0

cl „l(w)

• Rosenblatt transformation consists in using the inverse of the CDF of each variable in
sequence. Chaospy includes this transformation [Feinberg 2015]. Graph reproduced
from Chaospy tutorials.
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How to deal with correlated inputs
Rosenblatt Transformation [Rosenblatt 1952]
• Transforms the correlated input variable space into a multi-dimensional uncorrelated

uniform space. Solve the propagation problem in the uniform space.
• The transformation consists in using the inverse of the CDF of each variable in a

sequence. Chaospy includes this transformation [Feinberg 2015]. Graph reproduced
from Chaospy tutorials.
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Methods to find the coe�cients cl

Semi-Spectral projection (quadrature integration)

• Use a quadrature rule to approximate the integrals (nodes, xi and weights Êi).
Gaussian quadrature is widely used.

cl = Èy, „lÍ =

s
y(x) „l(x) PDF(x) dx ¥

qN
i=0 Êi y(xi) „l(xi)

• Pros: Very good for low number of dimensions
• Cons: Unstable for heavy tailed PDFs. Quadrature rules fail with most correlated

variables

Point collocation (polynomial fit)

• Generate a small sample and fit the polynomial basis using Least squares or some other
optimization method (e.g. LAR, LASSO).

• Pros: Very robust. Optimization algorithms are design to handle large number of
dimensions (sparsity) and correlated inputs.

• Cons: Not as e�cient as semi-spectral collocation.
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PCE of complex cases
Variable transformations steps

Rosenblatt transformation

• Used to decorrelate the variables
• Variables can be transformed to independent Uniform or Normal
• Inverse transformation used for MC sample. Use e�cient sampling techniques in the

unitary uniform uncorrelated space.

PCE model surrogate

• Polynomial chaos expansion working on the uncorrelated space.
• Trained using k-Fold validation to avoid over-fitting and prefer lower order polynomials

(Least absolute shrinkage and selection operator - LASSO problem).

Logistic transformation

• Used to force fixed constrains in the outputs: i.e. to avoid overshoots.
• Can be used to smooth discontinuities and to impose only positive values.
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Correlated
inputs

PDF(x)
Rosenblatt

transformation

Uniform
independent

PDF(w)

PCE
z(x) ¥ ẑ(w)

Overlimited
outputs
PDF(z)

Logistic
transformation

Correlated
outputs
PDF(y)
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Polynomial Chaos Expansions as wind turbine
aero-elastic model surrogates



DTU 10 MW RWT
Inputs: 4D Conditionally Correlated.

Model
• DTU: 10 MW reference WT and HAWC2 with Mann turbulence.

Uncertain Input Distribution, Class I-A site.
• WS ≥ Rayleigh(µ = 10)

• TIref = 16%

•
‡1 ≥ Lognormal(µ = µ(WS, TIref), ‡ = ‡(WS, TIref)), NTM from IEC 61400-1.

•
– ≥ Normal(µ = 0.088[log(WS) ≠ 1], ‡ = 1/WS), [Dimitrov 2015]

•
“ ≥ Normal(0, ‡ = 5

¶
)

• Obtain statistics from 100 TSeed realizations at each input

10 DTU Wind Energy J. P. Murcia - jumu@dtu.dk E�cient uncertainty propagation through an aero-elastic wind turbine
model

13.7.2016

Input variables
x œ R4

(WS; ‡
1

; –; “)

Model
M(x)

Output variables
y = M(x) œ R



DTU 10 MW RWT. Training sample
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DTU 10 MW RWT. Power surrogate
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Var WS ‡1 Shear Yaw Turb_real

P 1.0 3 ◊ 10

≠4
3 ◊ 10

≠4
1 ◊ 10

≠4
4 ◊ 10

≠3

Rank 1 3-4 3-4 5 2



DTU 10 MW RWT. Power surrogate
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How to deal with the turbulent inflow realization uncertainty?

• Two polynomial chaos expansion are built independently for each output variable:

ŷE(x) ¥ yE(x) = E(y|x) ŷS(x) ¥ yS(x) = S(y|x)

ŷ(x) ≥ Normal(ŷE(x), ŷS(x))

•
yS(x) is the local variation due to the di�erent turbulent structures.

• For example PS represents the standard deviation of multiple 10-min averaged powers
with di�erent turbulent inflow realization. PS is NOT the standard deviation of the
instantaneous power during the 10 minutes of simulation.
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DTU 10 MW RWT. PCE for individual local statistical
moments
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DTU 10 MW RWT. Thrust coe�cient surrogate
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Var WS ‡1 Shear Yaw Turb_real

CT 1.0 1 ◊ 10

≠3
1 ◊ 10

≠3
7 ◊ 10

≠4
1 ◊ 10

≠2

Rank 1 3-4 3-4 5 2



DTU 10 MW RWT. Thrust coe�cient surrogate
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DTU 10 MW RWT. Blade root flapwise EFL surrogate
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Var WS ‡1 Shear Yaw Turb_real

BRF 9 ◊ 10

≠1
5 ◊ 10

≠2
1 ◊ 10

≠2
3 ◊ 10

≠3
7 ◊ 10

≠2

Rank 1 3 4 5 2



DTU 10 MW RWT. Blade root flapwise EFL surrogate

19 DTU Wind Energy J. P. Murcia - jumu@dtu.dk E�cient uncertainty propagation through an aero-elastic wind turbine
model

13.7.2016



DTU 10 MW RWT. Tower bottom fore-aft EFL surrogate
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Var WS ‡1 Shear Yaw Turb_real

TBF 6 ◊ 10

≠1
2 ◊ 10

≠1
3 ◊ 10

≠4
1 ◊ 10

≠3
3 ◊ 10

≠1

Rank 1 3 5 4 2



DTU 10 MW RWT. Tower bottom fore-aft EFL surrogate
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DTU 10 MW RWT. Tower top yaw EFL surrogate
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Var WS ‡1 Shear Yaw Turb_real

TTY 9 ◊ 10

≠1
7 ◊ 10

≠2
2 ◊ 10

≠4
1 ◊ 10

≠3
7 ◊ 10

≠2

Rank 1 2-3 5 4 2-3



DTU 10 MW RWT. Tower bottom fore-aft EFL surrogate
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Convergence example
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Uncertainty in the surrogates
Leave-one-out cross validation to estimate the distribution of prediction
errors of the surrogates

ŷ(x) ≥ Normal(ŷE(x) + ‘y E max(y), ŷS(x) + ‘y S max(y))

‘y E =

ŷE(xLO) ≠ yE(xLO)

max(y)

‘y S =

ŷS(xLO) ≠ yS(xLO)

max(y)
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Uncertainty in AEP and E(EFL).
Two nested propagations of uncertainty.
Use the surrogate of the DTU 10 MW RWT with uncertain WS resources.
Assume a distribution of the 1 year WS resources
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Variable Distribution Parameters

A Normal µA = 9 ‡ = 0.5 m/s

k Normal µA = 2 ‡ = 0.1

x0 = WS Weibull scale= A shape= k

x1 = ‡1 Lognormal µ‡1(WS) ‡‡1(WS)

x2 = – Normal µ–(WS) ‡–(WS)

x3 = “ Normal µ“ = 0 ‡“ = 5 deg.



Conclusions

PCE as Aero-ealastic model surrogate:

• E�cient uncertainty propagation that enables to compute the statistics of the output
such as: mean, standard deviation and sensitivity analysis.

• E�ect of turbulent seed requires to estimate the mean and variance for every simulation
using a sample of turbulent seeds for each output.

• The surrogate is able to predict both the local and global distribution of the P, CT, EFL.
• It is possible to use the surrogate inside a wind power plant optimization framework and

inside uncertainty estimations of AEP and lifetime EFL.
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The surrogates are a way to obtain load estimation under site specific
characteristics without sharing the proprietary aero-elastic design.



Future Work

Surrogates

• NREL 5 MW floating RWT. Under the 5D input case [Graf 2015].
• DTU 10 MW RWT operating inside a wind farm. Dynamic wake meandering model to

predict input flow conditions. 9D input case.

Sensitivity analysis and uncertainty propagation:

• PCE for SA with large number of inputs (more than 100) applied to WAsP.

Reliability and failure estimation:

• Importance sampling with PCE for extreme loads
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Questions?
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Questions?

J. P. Murcia Technical University of Denmark (DTU)
+45 2339 7790 Building 101
jumu@dtu.dk Risø Campus
PhD Student Frederiksborgvej 399
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How to avoid over fitting and achieve sparsity?
Sparse linear model regression

• Least Absolute Shrinkage and Selection Operator problem (LASSO) is useful to avoid
over-fitting and achieve sparsity in the PCE.

• LASSO is a least squares minimization problem with a l1 penalization on the
coe�cients (c):

min

c

N≠1ÿ

i=0

C
Nc≠1ÿ

l=0

cl„l(wi) ≠ y(xi)

D2

+ –

Nc≠1ÿ

l=0

|cl|

31 DTU Wind Energy J. P. Murcia - jumu@dtu.dk E�cient uncertainty propagation through an aero-elastic wind turbine
model

13.7.2016



How to select the right sparsity?
k-fold cross validation

• It divides the dataset in k groups and uses k-1 groups (“folds”) for training and the
remaining for validation. Repeat this process until all the groups have been the
validation set.

• k-fold cross validation is repeated for multiple values of the sparsity parameter (–).
• As a result it gives the optimal sparsity parameter (–).
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DTU 10 MW RWT.
20-fold Cross validation examples
• Each blue line is the mean square error of a single k-fold prediction (trained with 95%

of the data and tested in the remaining 5%)
• Black line is the average over all the validation set combinations
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